Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Commun ; 14(1): 3266, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277340

RESUMO

Embryonic tissues undergoing shape change draw mechanical input from extraembryonic substrates. In avian eggs, the early blastoderm disk is under the tension of the vitelline membrane (VM). Here we report that the chicken VM characteristically downregulates tension and stiffness to facilitate stage-specific embryo morphogenesis. Experimental relaxation of the VM early in development impairs blastoderm expansion, while maintaining VM tension in later stages resists the convergence of the posterior body causing stalled elongation, failure of neural tube closure, and axis rupture. Biochemical and structural analysis shows that VM weakening is associated with the reduction of outer-layer glycoprotein fibers, which is caused by an increasing albumen pH due to CO2 release from the egg. Our results identify a previously unrecognized potential cause of body axis defects through mis-regulation of extraembryonic tissue tension.


Assuntos
Blastoderma , Galinhas , Animais , Regulação para Baixo , Blastoderma/fisiologia , Desenvolvimento Embrionário/genética
2.
Environ Monit Assess ; 195(7): 826, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294457

RESUMO

Eutrophication is an environmental issue which occurs when the environment becomes enriched with nutrients. Phosphorus (P) is a key nutrient limiting the phytoplankton and algal growth in many aquatic environments. Therefore, P removal could be a promising technique to control the eutrophication. Herein, a natural zeolite (NZ) was modified by two practical techniques, including zirconium (ZrMZ) and magnesium-ammonium modification (MNZ), and employed for phosphate removal. Batch, equilibrium, and column experiments were conducted to determine various adsorption parameters. Equilibrium data were fitted to two different isotherms and Freundlich isotherm provided the best fit which confirms multi-layer adsorption of phosphate ions on the adsorbents. The kinetic experiments demonstrated that the adsorption process is fast with more than 80% of phosphate adsorbed in the first 4 h, and a subsequent equilibrium was established after 16 h. The kinetic data were well described by pseudo-second-order model, suggesting that chemisorption is the mechanism of sorption. Intraparticle diffusion showed a rate-limiting step for phosphate adsorption on all the adsorbents, especially MNZ and ZrMZ. The fixed-bed column study showed that the phosphate concentration in the outlet (C) of ZrMZ column did not reach the initial concentration (C0) after passing 250 bed volume (BV), while it reached C0 after 100 BV when the MNZ was employed. Given the considerable improvement were seen, the results of this study suggest that surface of zeolite can be modified with zirconium (and in a less extent magnesium-ammonium) to enhance adsorption of phosphate from many eutrophic lakes.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Zeolitas , Fosfatos , Zircônio , Magnésio , Monitoramento Ambiental , Água , Cinética , Adsorção , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Soluções
3.
J Air Waste Manag Assoc ; 73(6): 502-516, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36880994

RESUMO

Implications: Non-tailpipe emissions driven by springtime road dust in northern latitude communities is increasing in importance for air pollution control and improving our understanding of the health effects of chemical mixtures from particulate matter exposure. High-volume samples from a near-road site indicated that days affected by springtime road dust are substantively different from other days with respect to particulate matter mixture composition and meteorological drivers. The high load of trace elements in PM10 on high road dust days has important implications for the acute toxicity of inhaled air and subsequent health effects. The complex relationships between road dust and weather identified in this study may facilitate further research on the health effects of chemical mixtures related to road dust while also highlighting potential changes in this unique form of air pollution as the climate changes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poeira/análise , Poluentes Atmosféricos/análise , Colúmbia Britânica , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Material Particulado/análise , Emissões de Veículos/análise
4.
Mol Psychiatry ; 28(5): 2148-2157, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702863

RESUMO

Autism is a highly heritable, heterogeneous, neurodevelopmental condition. Large-scale genetic studies, predominantly focussing on simplex families and clinical diagnoses of autism have identified hundreds of genes associated with autism. Yet, the contribution of these classes of genes to multiplex families and autistic traits still warrants investigation. Here, we conducted whole-genome sequencing of 21 highly multiplex autism families, with at least three autistic individuals in each family, to prioritise genes associated with autism. Using a combination of both autistic traits and clinical diagnosis of autism, we identify rare variants in genes associated with autism, and related neurodevelopmental conditions in multiple families. We identify a modest excess of these variants in autistic individuals compared to individuals without an autism diagnosis. Finally, we identify a convergence of the genes identified in molecular pathways related to development and neurogenesis. In sum, our analysis provides initial evidence to demonstrate the value of integrating autism diagnosis and autistic traits to prioritise genes.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtornos do Neurodesenvolvimento , Humanos , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Fenótipo , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética
5.
Ann Otol Rhinol Laryngol ; 132(10): 1265-1270, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36541620

RESUMO

INTRODUCTION: Near-total ear avulsion is a rare and challenging problem to repair with many techniques described; primary repair is an attractive option but is not always successful. Healing may be augmented with postoperative hyperbaric oxygen therapy (HBOT), but this technique is under-reported, and an ideal regimen is not known. The study objective is to discuss the role of HBOT in the management of ear avulsion by reviewing 2 unique cases. METHODS: Case report and review of the literature. A Pubmed search using the terms ear avulsion and postoperative hyperbaric oxygen was performed. RESULTS: Two pediatric patients presented with near-total avulsion of the auricle after suffering a dog bite. Various management options were discussed including observation, primary repair, post-auricular cartilage banking, graft reconstruction with periauricular tissue or rib cartilage, or microsurgical replantation. The decision was made to perform primary reattachment, followed by adjuvant hyperbaric oxygen therapy (HBOT). The patients achieved favorable esthetic results and continue to maintain the function of the reattached ear. Photo documentation was obtained throughout the process. DISCUSSION: There is no consensus on the management of near-total ear avulsion. Primary repair is ideal from a cosmetic and ease-of-operation standpoint but does not always yield viable tissue. The use of postoperative HBOT is an attractive option that may boost success rates, but the ideal HBOT regimen is unknown. These cases represent a successful application of this innovative technique in a pediatric patient.


Assuntos
Oxigenoterapia Hiperbárica , Procedimentos de Cirurgia Plástica , Animais , Cães , Humanos , Cartilagem da Orelha/cirurgia , Orelha Externa/cirurgia , Reimplante/métodos , Criança
6.
J Cell Biol ; 222(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36355348

RESUMO

Mechanisms that safeguard mitochondrial DNA (mtDNA) limit the accumulation of mutations linked to mitochondrial and age-related diseases. Yet, pathways that repair double-strand breaks (DSBs) in animal mitochondria are poorly understood. By performing a candidate screen for mtDNA repair proteins, we identify that REC-an MCM helicase that drives meiotic recombination in the nucleus-also localizes to mitochondria in Drosophila. We show that REC repairs mtDNA DSBs by homologous recombination in somatic and germline tissues. Moreover, REC prevents age-associated mtDNA mutations. We further show that MCM8, the human ortholog of REC, also localizes to mitochondria and limits the accumulation of mtDNA mutations. This study provides mechanistic insight into animal mtDNA recombination and demonstrates its importance in safeguarding mtDNA during ageing and evolution.


Assuntos
Reparo do DNA , DNA Mitocondrial , Proteínas de Drosophila , Animais , Humanos , Reparo do DNA/genética , DNA Mitocondrial/genética , Drosophila/genética , Proteínas de Drosophila/genética , Recombinação Homóloga , Meiose , Mitocôndrias/genética
7.
J Sports Sci Med ; 21(1): 127-130, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35250342

RESUMO

Road-racing shoes recently experienced major changes. In the recent past, lightweight, thin midsole shoes were thought to help runners maximize their performance. But, in 2017, Nike released the Vaporfly shoe which transformed the thinking about racing shoe design. Incorporating a curved carbon fiber plate embedded in a thick, compliant and resilient midsole resulted in a reduced metabolic cost across a range of running speeds. We hypothesized the new style of shoes would be less effective uphill than downhill due to the larger ground reaction forces and hence greater elastic energy storage in the shoe during downhill running. Eighteen runners completed two days of testing, each comprising two trials of two shoe models (Saucony Endorphin Pro (EP) and Type A) and three grade conditions (uphill, level and downhill), i.e. 12 trials per day. Oxygen uptake, ground reaction forces, and lower-body kinematics were captured during each condition. Comparisons of the percent metabolic benefit were made between shoes for each grade. Stride rate, ground time, peak vertical force, and flight time were regressed with the percent metabolic benefit of the EP over the Type A shoe across grades. Metabolic benefits of the Endorphin Pro were similar across the three grade conditions (p = 0.778). No significant correlations were observed between how much benefit one runner got over another specific to grade. The new style of road-racing shoes effectively decreases metabolic cost equally across grades. Differences in running mechanics between runners did not explain greater individual metabolic benefits between shoe conditions during uphill or downhill running.


Assuntos
Endorfinas , Corrida , Fenômenos Biomecânicos , Fibra de Carbono , Humanos , Sapatos
8.
Nat Commun ; 13(1): 334, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039505

RESUMO

RNF43/ZNRF3 negatively regulate WNT signalling. Both genes are mutated in several types of cancers, however, their contribution to liver disease is unknown. Here we describe that hepatocyte-specific loss of Rnf43/Znrf3 results in steatohepatitis and in increase in unsaturated lipids, in the absence of dietary fat supplementation. Upon injury, Rnf43/Znrf3 deletion results in defective hepatocyte regeneration and liver cancer, caused by an imbalance between differentiation/proliferation. Using hepatocyte-, hepatoblast- and ductal cell-derived organoids we demonstrate that the differentiation defects and lipid alterations are, in part, cell-autonomous. Interestingly, ZNRF3 mutant liver cancer patients present poorer prognosis, altered hepatic lipid metabolism and steatohepatitis/NASH signatures. Our results imply that RNF43/ZNRF3 predispose to liver cancer by controlling the proliferative/differentiation and lipid metabolic state of hepatocytes. Both mechanisms combined facilitate the progression towards malignancy. Our findings might aid on the management of those RNF43/ZNRF3 mutated individuals at risk of developing fatty liver and/or liver cancer.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Regeneração Hepática , Fígado/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Animais , Carcinoma Hepatocelular/patologia , Diferenciação Celular , Proliferação de Células , Fígado Gorduroso/patologia , Deleção de Genes , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatomegalia/patologia , Humanos , Hiperplasia , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Lipidômica , Fígado/patologia , Neoplasias Hepáticas/patologia , Camundongos , Prognóstico
9.
Genome Res ; 31(12): 2290-2302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34772700

RESUMO

Arbuscular mycorrhizal (AM) fungi form mutualistic relationships with most land plant species. AM fungi have long been considered as ancient asexuals. Long-term clonal evolution would be remarkable for a eukaryotic lineage and suggests the importance of alternative mechanisms to promote genetic variability facilitating adaptation. Here, we assessed the potential of transposable elements for generating such genomic diversity. The dynamic expression of TEs during Rhizophagus irregularis spore development suggests ongoing TE activity. We find Mutator-like elements located near genes belonging to highly expanded gene families. Whole-genome epigenomic profiling of R. irregularis provides direct evidence of DNA methylation and small RNA production occurring at TE loci. Our results support a model in which TE activity shapes the genome, while DNA methylation and small RNA-mediated silencing keep their overproliferation in check. We propose that a well-controlled TE activity directly contributes to genome evolution in AM fungi.

10.
Mol Biol Evol ; 38(5): 2057-2069, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480997

RESUMO

Antibiotic combinations are considered a relevant strategy to tackle the global antibiotic resistance crisis since they are believed to increase treatment efficacy and reduce resistance evolution (WHO treatment guidelines for drug-resistant tuberculosis: 2016 update.). However, studies of the evolution of bacterial resistance to combination therapy have focused on a limited number of drugs and have provided contradictory results (Lipsitch, Levin BR. 1997; Hegreness et al. 2008; Munck et al. 2014). To address this gap in our understanding, we performed a large-scale laboratory evolution experiment, adapting eight replicate lineages of Escherichia coli to a diverse set of 22 different antibiotics and 33 antibiotic pairs. We found that combination therapy significantly limits the evolution of de novode novo resistance in E. coli, yet different drug combinations vary substantially in their propensity to select for resistance. In contrast to current theories, the phenotypic features of drug pairs are weak predictors of resistance evolution. Instead, the resistance evolution is driven by the relationship between the evolutionary trajectories that lead to resistance to a drug combination and those that lead to resistance to the component drugs. Drug combinations requiring a novel genetic response from target bacteria compared with the individual component drugs significantly reduce resistance evolution. These data support combination therapy as a treatment option to decelerate resistance evolution and provide a novel framework for selecting optimized drug combinations based on bacterial evolutionary responses.


Assuntos
Antibacterianos , Evolução Biológica , Farmacorresistência Bacteriana Múltipla/genética , Modelos Genéticos , Quimioterapia Combinada , Escherichia coli
11.
Nat Commun ; 11(1): 3491, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661239

RESUMO

Sperm contributes genetic and epigenetic information to the embryo to efficiently support development. However, the mechanism underlying such developmental competence remains elusive. Here, we investigated whether all sperm cells have a common epigenetic configuration that primes transcriptional program for embryonic development. Using calibrated ChIP-seq, we show that remodelling of histones during spermiogenesis results in the retention of methylated histone H3 at the same genomic location in most sperm cell. This homogeneously methylated fraction of histone H3 in the sperm genome is maintained during early embryonic replication. Such methylated histone fraction resisting post-fertilisation reprogramming marks developmental genes whose expression is perturbed upon experimental reduction of histone methylation. A similar homogeneously methylated histone H3 fraction is detected in human sperm. Altogether, we uncover a conserved mechanism of paternal epigenetic information transmission to the embryo through the homogeneous retention of methylated histone in a sperm cells population.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Animais , Cromatina/genética , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Histonas/genética , Histonas/metabolismo , Masculino , Espermatogênese/genética , Espermatogênese/fisiologia , Xenopus
12.
J Cell Biol ; 219(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32328641

RESUMO

Filopodia are finger-like actin-rich protrusions that extend from the cell surface and are important for cell-cell communication and pathogen internalization. The small size and transient nature of filopodia combined with shared usage of actin regulators within cells confounds attempts to identify filopodial proteins. Here, we used phage display phenotypic screening to isolate antibodies that alter the actin morphology of filopodia-like structures (FLS) in vitro. We found that all of the antibodies that cause shorter FLS interact with SNX9, an actin regulator that binds phosphoinositides during endocytosis and at invadopodia. In cells, we discover SNX9 at specialized filopodia in Xenopus development and that SNX9 is an endogenous component of filopodia that are hijacked by Chlamydia entry. We show the use of antibody technology to identify proteins used in filopodia-like structures, and a role for SNX9 in filopodia.


Assuntos
Pseudópodes/metabolismo , Nexinas de Classificação/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Feminino , Células HeLa , Humanos , Masculino , Nexinas de Classificação/genética , Proteínas de Xenopus/genética , Xenopus laevis
13.
Sci Rep ; 9(1): 5185, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914725

RESUMO

A novel DNA modification, N-6 methylated deoxyadenosine (m6dA), has recently been discovered in eukaryotic genomes. Despite its low abundance in eukaryotes, m6dA is implicated in human diseases such as cancer. It is therefore important to precisely identify and characterize m6dA in the human genome. Here, we identify m6dA sites at nucleotide level, in different human cells, genome wide. We compare m6dA features between distinct human cells and identify m6dA characteristics in human genomes. Our data demonstrates for the first time that despite low m6dA abundance, the m6dA mark does often occur consistently at the same genomic location within a given human cell type, demonstrating m6dA homogeneity. We further show, for the first time, higher levels of m6dA homogeneity within one chromosome. Most m6dA are found on a single chromosome from a diploid sample, suggesting inheritance. Our transcriptome analysis not only indicates that human genes with m6dA are associated with higher RNA transcript levels but identifies allele-specific gene transcripts showing haplotype-specific m6dA methylation, which are implicated in different biological functions. Our analyses demonstrate the precision and consistency by which the m6dA mark occurs within the human genome, suggesting that m6dA marks are precisely inherited in humans.


Assuntos
Metilação de DNA/genética , Desoxiadenosinas/metabolismo , Genoma Humano , Linhagem Celular , Cromossomos Humanos/metabolismo , Humanos , Transcrição Gênica
14.
Cell Rep ; 24(2): 304-311, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996092

RESUMO

Oocytes have a remarkable ability to reactivate silenced genes in somatic cells. However, it is not clear how the chromatin architecture of somatic cells affects this transcriptional reprogramming. Here, we investigated the relationship between the chromatin opening and transcriptional activation. We reveal changes in chromatin accessibility and their relevance to transcriptional reprogramming after transplantation of somatic nuclei into Xenopus oocytes. Genes that are silenced, but have pre-existing open transcription start sites in donor cells, are prone to be activated after nuclear transfer, suggesting that the chromatin signature of somatic nuclei influences transcriptional reprogramming. There are also activated genes associated with new open chromatin sites, and transcription factors in oocytes play an important role in transcriptional reprogramming from such genes. Finally, we show that genes resistant to reprogramming are associated with closed chromatin configurations. We conclude that chromatin accessibility is a central factor for successful transcriptional reprogramming in oocytes.


Assuntos
Reprogramação Celular/genética , Cromatina/metabolismo , Oócitos/metabolismo , Transcrição Gênica , Animais , Fibroblastos/citologia , Fibroblastos/transplante , Camundongos , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Ativação Transcricional/genética , Transposases/metabolismo , Xenopus laevis/metabolismo
15.
Nat Med ; 23(12): 1424-1435, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29131160

RESUMO

Human liver cancer research currently lacks in vitro models that can faithfully recapitulate the pathophysiology of the original tumor. We recently described a novel, near-physiological organoid culture system, wherein primary human healthy liver cells form long-term expanding organoids that retain liver tissue function and genetic stability. Here we extend this culture system to the propagation of primary liver cancer (PLC) organoids from three of the most common PLC subtypes: hepatocellular carcinoma (HCC), cholangiocarcinoma (CC) and combined HCC/CC (CHC) tumors. PLC-derived organoid cultures preserve the histological architecture, gene expression and genomic landscape of the original tumor, allowing for discrimination between different tumor tissues and subtypes, even after long-term expansion in culture in the same medium conditions. Xenograft studies demonstrate that the tumorogenic potential, histological features and metastatic properties of PLC-derived organoids are preserved in vivo. PLC-derived organoids are amenable for biomarker identification and drug-screening testing and led to the identification of the ERK inhibitor SCH772984 as a potential therapeutic agent for primary liver cancer. We thus demonstrate the wide-ranging biomedical utilities of PLC-derived organoid models in furthering the understanding of liver cancer biology and in developing personalized-medicine approaches for the disease.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias Hepáticas/patologia , Organoides/patologia , Cultura Primária de Células/métodos , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Proliferação de Células , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Medicina de Precisão , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cell Stem Cell ; 21(1): 135-143.e6, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28366589

RESUMO

Vertebrate eggs can induce the nuclear reprogramming of somatic cells to enable production of cloned animals. Nuclear reprogramming is relatively inefficient, and the development of the resultant embryos is frequently compromised, in part due to the inappropriate expression of genes previously active in the donor nucleus. Here, we identify H3K4 methylation as a major epigenetic roadblock that limits transcriptional reprogramming and efficient nuclear transfer (NT). Widespread expression of donor-cell-specific genes was observed in inappropriate cell types in NT embryos, limiting their developmental capacity. The expression of these genes in reprogrammed embryos arises from epigenetic memories of a previously active transcriptional state in donor cells that is characterized by high H3K4 methylation. Reducing H3K4 methylation had little effect on gene expression in donor cells, but it substantially improved transcriptional reprogramming and development of NT embryos. These results show that H3K4 methylation imposes a barrier to efficient nuclear reprogramming and suggest approaches for improving reprogramming strategies.


Assuntos
Reprogramação Celular , Epigênese Genética , Histonas/metabolismo , Técnicas de Transferência Nuclear , Proteínas de Xenopus/metabolismo , Animais , Feminino , Histonas/genética , Masculino , Metilação , Camundongos , Proteínas de Xenopus/genética , Xenopus laevis
17.
Biol Open ; 6(4): 415-424, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28412714

RESUMO

Animal cloning has been achieved in many species by transplanting differentiated cell nuclei to unfertilized oocytes. However, the low efficiencies of cloning have remained an unresolved issue. Here we find that the combination of two small molecules, trichostatin A (TSA) and vitamin C (VC), under culture condition with bovine serum albumin deionized by ion-exchange resins, dramatically improves the cloning efficiency in mice and 15% of cloned embryos develop to term by means of somatic cell nuclear transfer (SCNT). The improvement was not observed by adding the non-treated, rather than deionized, bovine serum. RNA-seq analyses of SCNT embryos at the two-cell stage revealed that the treatment with TSA and VC resulted in the upregulated expression of previously identified reprogramming-resistant genes. Moreover, the expression of early-embryo-specific retroelements was upregulated by the TSA and VC treatment. The enhanced gene expression was relevant to the VC-mediated reduction of histone H3 lysine 9 methylation in SCNT embryos. Our study thus shows a simply applicable method to greatly improve mouse cloning efficiency, and furthers our understanding of how somatic nuclei acquire totipotency.

18.
Mol Cell ; 65(5): 873-884.e8, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28257702

RESUMO

Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by oocyte factors. A majority of genes is affected by more than one type of treatment, suggesting that resistance can require repression through multiple epigenetic mechanisms. We classify resistant genes according to their sensitivity to 11 chromatin modifier combinations, revealing the existence of synergistic as well as adverse effects of chromatin modifiers on removal of resistance. We further demonstrate that the chromatin modifier USP21 reduces resistance through its H2AK119 deubiquitylation activity. Finally, we provide evidence that H2A ubiquitylation also contributes to resistance to transcriptional reprogramming in mouse nuclear transfer embryos.


Assuntos
Núcleo Celular/metabolismo , Reprogramação Celular , Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Histonas/metabolismo , Técnicas de Transferência Nuclear , Transcrição Gênica , Animais , Animais Geneticamente Modificados , Linhagem Celular , Cromatina/genética , Montagem e Desmontagem da Cromatina , Clonagem Molecular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Oócitos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Xenopus laevis
19.
Genome Res ; 26(8): 1034-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27034506

RESUMO

For a long time, it has been assumed that the only role of sperm at fertilization is to introduce the male genome into the egg. Recently, ideas have emerged that the epigenetic state of the sperm nucleus could influence transcription in the embryo. However, conflicting reports have challenged the existence of epigenetic marks on sperm genes, and there are no functional tests supporting the role of sperm epigenetic marking on embryonic gene expression. Here, we show that sperm is epigenetically programmed to regulate embryonic gene expression. By comparing the development of sperm- and spermatid-derived frog embryos, we show that the programming of sperm for successful development relates to its ability to regulate transcription of a set of developmentally important genes. During spermatid maturation into sperm, these genes lose H3K4me2/3 and retain H3K27me3 marks. Experimental removal of these epigenetic marks at fertilization de-regulates gene expression in the resulting embryos in a paternal chromatin-dependent manner. This demonstrates that epigenetic instructions delivered by the sperm at fertilization are required for correct regulation of gene expression in the future embryos. The epigenetic mechanisms of developmental programming revealed here are likely to relate to the mechanisms involved in transgenerational transmission of acquired traits. Understanding how parental experience can influence development of the progeny has broad potential for improving human health.


Assuntos
Metilação de DNA/genética , Epigênese Genética , Histona-Lisina N-Metiltransferase/genética , Espermatozoides/metabolismo , Animais , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/biossíntese , Histonas , Humanos , Masculino , Ranidae/genética , Ranidae/crescimento & desenvolvimento , Espermátides/crescimento & desenvolvimento , Espermátides/metabolismo , Espermatozoides/crescimento & desenvolvimento
20.
Nat Commun ; 7: 11373, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27109213

RESUMO

Cell competition is a quality control mechanism that eliminates unfit cells. How cells compete is poorly understood, but it is generally accepted that molecular exchange between cells signals elimination of unfit cells. Here we report an orthogonal mechanism of cell competition, whereby cells compete through mechanical insults. We show that MDCK cells silenced for the polarity gene scribble (scrib(KD)) are hypersensitive to compaction, that interaction with wild-type cells causes their compaction and that crowding is sufficient for scrib(KD) cell elimination. Importantly, we show that elevation of the tumour suppressor p53 is necessary and sufficient for crowding hypersensitivity. Compaction, via activation of Rho-associated kinase (ROCK) and the stress kinase p38, leads to further p53 elevation, causing cell death. Thus, in addition to molecules, cells use mechanical means to compete. Given the involvement of p53, compaction hypersensitivity may be widespread among damaged cells and offers an additional route to eliminate unfit cells.


Assuntos
Comunicação Celular , Células Madin Darby de Rim Canino/química , Células Madin Darby de Rim Canino/citologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Fenômenos Biomecânicos , Cães , Drosophila/citologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Madin Darby de Rim Canino/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína Supressora de Tumor p53/genética , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...